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This paper is concerned with the study of one-body dissipation effects in idealized models resembling a
nucleus. In particular, we study the quantum mechanics of a free particle that collides elastically with the
slowly moving walls of a Bunimovich stadium billiard. Our results are twofold. First, we develop a method to
solve in a simple way the quantum mechanical evolution of planar billiards with moving walls. The formalism
is based on thescaling method@E. Vergini and M. Saraceno, Phys. Rev. E52, 2204~1995!# which enables the
resolution of the problem in terms of quantities defined over the boundary of the billiard. The second result is
related to the quantum aspects of dissipation in systems with complex spectra. We conclude that in a slowly
varying evolution the energy is transferred from the boundary to the particle through Landau-Zener transitions.
@S1063-651X~96!11211-3#

PACS number~s!: 05.30.2d, 05.45.1b

INTRODUCTION

The way in which energy is transferred from the time-
dependent mean field to the individual nucleons is an impor-
tant ingredient, for instance, in fission processes@2# and in
large amplitude collective motion at low energies. Because
of the Pauli principle it is expected that one body effects, i.e.,
loss of energy due to collision of independent individual
nucleons with the mean field, should dominate the dissipa-
tion mechanism.

Several descriptions of these processes involving different
approximations are available in the literature@3–6#. These
theories are perturbative in character and linear in the collec-
tive motion. Therefore they are not suited to address the
issues related to nonlinear dynamics and the onset of chaos.
On the other hand, the integrable or chaotic nature of the
motion is of crucial importance to the dissipation mechanism
@7#, i.e., the transition from order to chaos provides the pos-
sibility for a variety of nuclear responses~from elastic to
elastoplastic to dissipative!. Therefore, detailed studies of
simplified models resembling a nucleus may be of interest.

Planar billiards are perhaps the best systems to model the
processes described above on, in which the nucleus can be
imagined as a time-dependent container filled with a gas of
noninteracting point particles@3,8#. Billiard systems have
been thoroughly studied in the context of classical and quan-
tum chaos@9#. In particular, it has been shown that the quan-
tum spectra of generic planar billiards have GOE~Gaussian
orthogonal ensemble! characteristics that are observed in the
excited spectra of nuclei@10#.

In a seminal paper, Hill and Wheeler@11# suggested the
Landau-Zener~LZ! transitions as a mechanism for nuclear
dissipation. The mechanism is based on the excitation of the

individual nucleons via transitions at avoided level crossings
near the Fermi surface. These excitations produce the damp-
ing of collective motion describing deformation of the
nucleus. In an adiabatic evolution of the collective coordi-
nates, the nucleus changes its shape relatively slowly, while
the nucleonic levels move up and down in energy. Small
deformations in the nuclear shape occasionally cause two
nucleonic levels to almost cross each other and experience an
avoided crossing. During the whole process many avoided
crossings occur with more or less random transitions be-
tween nearest neighbors, in such a way that the system may
end up in an arbitrary energy state. Within this picture one
can imagine a stochastic dynamics in which by simply re-
versing the temporal evolution one does not recover the ini-
tial state. Therefore, the internal degrees of freedom are ex-
cited and the motion of the collective coordinates is thus
damped.

More recently Wilkinson, making good use of the prop-
erties of complex spectra, introduced a statistical treatment
of dissipation in finite-sized quantum systems in terms of LZ
transitions in the context of random matrix theory@12#.
However, a LZ mechanism as the generator of dissipation in
systems with complex spectra, has recently been seriously
questioned@13#. In their works Bulgac and collaborators sug-
gest that the diffusive process in energy is dominated by
memory effects and that the picture for dissipation through
LZ transitions is likely to be incorrect~see Sec. III for a
detailed analysis of these arguments!. Obviously the best
way to elucidate this question is to solve the quantum me-
chanical evolution of a generic system, though this is diffi-
cult even for planar billiards with moving walls.

The goal of the present article is to present a formulation
to solve the quantum mechanical evolution of planar billiards
with moving boundaries. Using this formulation we study the
time evolution of a specific billiard, the Bunimovich stadium
with externally driven walls. We restrict the analysis to
slowly varying ~adiabatic! evolutions @14#. The notion of
slow motion will be quantified in Sec. IV. Our aim is to
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understand whether a LZ mechanism generates the damping
of the slow degree of freedom in a system with complex
spectra.

The paper outline is as follows. In Sec. I we introduce a
one-dimensional formulation in order to solve the quantum
evolution of planar billiards with moving walls. Section II is
devoted to the numerical results obtained for the Bunimovich
stadium billiard with GOE spectrum characteristics. Using
these results, we evaluate relevant properties for the dissipa-
tion process. In Sec. III we discuss in detail whether a LZ
transition mechanism describes the dissipation of the slow
degree of freedom or equivalently the diffusion of the fast
ones. Section IV is devoted to final remarks and conclusions.

Before proceeding we want to stress that planar billiards
systems externally driven can also be used to model other
problems often encountered, for example, in mesoscopic sys-
tems, atomic clusters, and of course deformable cavities@15#.
Therefore, the results presented in this work could also con-
tribute to domains other than nuclear physics.

I. THE METHOD

In a recent work Vergini and Saraceno developed a
method to calculate directlyall eigenvalues and eigenfunc-
tions in a narrow energy range of quite general time inde-
pendent 22d billiards, by solving a generalized eigenvalue
problem in terms of quantities defined over the boundary.
The method is based on the use of scaling that enables us to
write the boundary norm explicitly as a function of the en-
ergy @1#. The aim of this section is to extend the method of
scaling to solve the Schro¨dinger equation for 22d billiards
with time-dependent boundary conditions.

Let C(t) be a closed curve defining at timet a two-
dimensional domainD(t). We restrict ourselves to star
shaped domains, this means thatr n[r•n.0 ;rPC(t);n is
the outgoing normal toC(t). Consider a particle of massm
inside the billiard, then the Schro¨dinger equation reads,

]C

]t
5 i

\

2m
DC. ~1.1!

C satisfies the time-dependent boundary condition
C(z,t)50 wherez is a point onC(t), and we consider func-
tions normalized to one on the domain. A standard procedure
is to expand the solution in terms of the adiabatic basis,

C~r ,t !5(
m

am~ t !Pm~ t !fm~r ,t !. ~1.2!

Pm(t)[exp(2i*0
tvmdt8) is the contribution of the dynamical

phase withvm5\km
2 (t)/2m. The adiabatic basis$fm% con-

stitutes a complete set of real eigenfunctions of the billiard at
each time; that is,fm satisfies the Helmholtz equation
Dfm(r ,t)52km

2 (t)fm(r ,t) with Dirichlet boundary condi-
tion fm(z,t)50, and it is a continuous function of time.

We generate from the original domain defined byC(t) a
family of systems that depends on a parametera. These
systems evolve with the curvesCa(t) that are obtained from
C(t) through a scaling transformation on the planer→ar @if
z is a point onC(t), thenz/a is the corresponding point on
Ca(t)#.

To each functionfm(r ,t) we associate the scaling func-
tion fm(a,r ,t)[fm(ar ,t). This family of functions depend-
ing on the scaling parametera verifies the Helmholtz equa-
tion with wave numberakm and satisfies the Dirichlet
condition over the scaled boundary. Moreover, we require
that the mass of the particle in the scaled systems changes as
a2m in such a way thatvm is independent ofa. The last
statement implies that the time evolution is the same forall
the scaled systems.

Our approach to solve the Schro¨dinger equation is to ex-
pand the wave function in terms of the adiabatic basis rep-
resented by the scaling functions. After replacing the expan-
sion in Eq. (1.1) we obtain

(
n

ȧn~ t !Pn~ t !fn~a,r ,t !52(
n

an~ t !Pn~ t !
]fn

]t
~a,r ,t !.

~1.3!

Differentiating this equation with respect toa results in

(
n

ȧn~ t !Pn~ t !
]fn

]a
~a,r ,t !

52(
n

an~ t !Pn~ t !
]2fn

]a]t
~a,r ,t !. ~1.4!

The remainder of the calculus consists on commuting the
order of the partial derivation on the right-hand side~rhs! of
(1.4),multiply the equation by]fm /]a(a,r ,t) and special-
ize the resulting equation ina51. Finally we integrate over
the boundary of the billiardC(t). After this straightforward
calculation, the final equation reads,

(
n

ȧn~ t !Pn~ t ! R
C~ t !

]fm

]a

]fn

]a

dl

r n

52(
n

an~ t !Pn~ t ! R
C~ t !

]fm

]a

]

]t S ]fn

]a Ddlr n , ~1.5!

wheredl is the length element on the boundary. For the sake
of simplicity we have omitted the argument (a51,r ,t) in the
last equation. In@1# it was proved that the integral on the
left-hand side~lhs! of the last equation verifies a quasior-
thogonality relation, this means

1

2km
2 R

C~ t !

]fm

]a

]fn

]a

dl

r n
5dmn1

~km2kn!

~km1kn!
O~1!. ~1.6!

Employing this important relation in~1.5!, we derive the
standard system of differential equations in the adiabatic ba-
sis

ȧm~ t !52(
n

an~ t !@Pn~ t !/Pm~ t !#Cmn~ t ! ~1.7!

with the coefficientsCmn computed approximately in terms
of quantities defined over the boundary,

Cmn~ t !.
1

2km
2 R

C~ t !

]fm

]a

]

]t S ]fn

]a Ddlr n . ~1.8!
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The exact expression for the coefficients follows from~1.3!,

Cmn~ t !5E
D~ t !

fm~r ,t !
]fn

]t
~r ,t !ds. ~1.9!

In the last equation eachCmn(t) involves an integration on
the domainD(t). It is also very easy to prove that they are
antisymmetric.

To compute eachCmn via Eq. ~1.9! the domain of inte-
gration has to be partitioned at least inN'k2 cells, with k
equal to the maximum among the wave numbers of the func-
tions f in the region of integration,k5max$km ,kn%. If n is
the dimension of the adiabatic basis restricted to the energy
region where the evolution will take place, one needs to
know n2 coefficients. As a consequence, the dimension of
the problem of finding the coefficientsCmn from Eq. ~1.9!
turns to be of the order ofn23N at each time.

As a way to check the goodness of the present formula-
tion we have computed for the specific billiard studied in
Sec. II, the coefficientsCmn(t50) for a fixed m, with
n5m1 j ( j50,61,62, . . . ) calculated exactly@Eq. ~1.9!#
and using Eq.~1.8! ~see Fig. 1!. The correspondance is ex-
tremely good over a great number of levels. The departure
between the two plots begins foru j u'10, but in this region
the values of the coefficients are very small.

With the present formulation the CPU time necessary to
compute the coefficients is considerably reduced in compari-
son with the time needed in the standard approach@Eq.
~1.9!#. From the preceding remarks, and in order to study the
interaction between neighboring levels in the spectrum, we
will calculate the coefficientsCmn employing the relation
~1.8!.

II. NUMERICAL RESULTS

Using the method presented in Sec. I, we will analyze the
dynamics of a particle of massm inside a Bunimovich sta-
dium billiard with moving boundaries. A point particle inside
the static stadium billiard is a very well known example of a
fully classical chaotic system@16#. The particle moves freely
on the two-dimensional domain and is perfectly reflected
from its boundary. The boundary is formed by two semi-
circles of radiusr connected by two straight lines of length
2a. Figure 2 shows a desymmetrized version of the system
with area 11p/4.

To study the dynamics, the parameterl [a/r is changed
with a finite velocity l̇ in such a way that the total area of
the billiard remains unchanged. We have fixed the area to
avoid a drift in the energy spectrum; this situation is charac-
teristic of nuclear processes where the nucleonic density is
approximately constant. The drift term represents a revers-
ible change in the energy of the system and can be neglected
in the analysis of an irreversible dissipation process@17#.
Therefore, the dynamics of the boundary is introduced
through the functionl (t).

Figure 3 shows the spectrum ofk5A2mE/\ as a function

FIG. 1. CoefficientsCmn ~with km549.456 279) as a function of
kn computed exactly@Eq. ~4!# and employing the boundary defini-
tion @Eq. ~8!#. The system used is introduced in Sec. II and the
calculation corresponds tot50.

FIG. 2. Desymmetrized Bunimovich stadium billiard. The area
of the billiard is fixed to the value 11p/4. Then the boundary only
depends on one parameter (l [a/r ).

FIG. 3. Spectrum of the Bunimovich stadium billiard as a func-
tion of l , 1<l <1.14. The wave numberskm(l ) run between
48.8 and 50. See text for more details.
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of l , 1<l <1.14. We have selected the wave numbers
km(l ) between 48.8 and 50 because in this region a large
number of energy levels exists in a narrow portion of the
spectrum. Although the properties that we are going to
evaluate are characteristic of this region of the spectrum
(k;50), as we will show below, a proper scaling can be
done in order to evaluate them in other energy regions. The
spectrum exhibits the typical behavior of avoided levels
crossings that characterizes the energy levels as a function of
a parameter for general systems without constants of motion
@18#. Also, we recognize that some avoided crossings are
situated on two parallel lines labeledL3 andL4 ~see Fig. 3!.
These lines are associated to bouncing ball states with three
and four low excitations, respectively. These states are
highly localized in the momenta space@19#, therefore their
interaction with neighboring states is smaller than the inter-
action between delocalized generic states.

Let us analyze the coefficientsCmn which determine the
quantum mechanical evolution of the system~see Sec. I!.
They may be expressed in terms of the deformation param-

eter l , as they satisfy :Cmn(t)5 l̇ Cmn(l ).
Figure 4 shows the functionsuCmm11(l )u for several

pairs of nearest neighboring levels. A well defined structure
of peaks is observed. The peaks appear each time two neigh-
boring energy levels experience an avoided crossing~it is
very easy to follow in Fig. 3 a pair of energy levels as a
function of the parameterl in order to confirm this asser-
tion!. The height of the peaks diminishes when the energy
gap between levels at the avoided crossing increases. For this
reason the peaks corresponding to interaction with bouncing
ball states are one order of magnitude greater than the ge-
neric ones. We label witha, b, andc . . . small peaks that
correspond to not well defined avoided crossings or to situ-
ations where it is still difficult to decide whether an avoided
crossing exists by simple inspection of the spectrum~see also
Fig. 3!.

For second neighboring levels, we also find some well
defined peaks; they appear essentially when three levels
come close to each other~this situation is discussed in Sec.
III !. The heights of theCmm12(l ) peaks are one order of
magnitude smaller than those of theCmm11(l ). For coeffi-
cients withum2nu.2, we do not observe any simple struc-
ture; however, the amplitude of these coefficients is indeed
very small, lower than five in the scale of Fig. 1, in compari-
son with the amplitude observed for nearest neighboring co-
efficients. From the present analysis it is clear that the infor-
mation contained in the coefficients enables a complete
definition of the avoided crossings and that this information
is not always available in the spectrum.

The peaks between first neighboring levels are very well
fitted by Lorentzian functions, as is expected for a LZ tran-
sition ~the first part of Sec. III is devoted to an explanation of
the expected Lorentzian behavior of the coefficient!, for al-
most all peaks with the exception of some small ones. Figure
5 summarizes the preceding remarks. It shows on the top the
function uC1312(l )u2Lz(l ), where Lz(l ) is a sum of
Lorentzian functions centered on the well defined peaks of
the coefficientC1312(l ). Each Lorentzian function is defined
in Sec. III by Eq.~3.1!. The widths and the position of the
centers arel int and l 0, respectively. The remainder of the

Fig. 5 shows the functionsuC13132 j (l )u ( j52,3,4) as a func-
tion of l . The figure reveals the Lorentzian behavior of the
first neighboring levels coefficients, and the lack of a defined
structure in the coefficientsCmn(l ) for um2nu.2.

The previous numerical study would be still more appeal-
ing if we knew how the spectrum scales to other energy
regions. Weyl’s law@20# tells us that the density of states
associated to the vertical axis in Fig. 3, scales ask. The
problem appears with the horizontal axis because the scaling
of the density of consecutive avoided crossingsra.c is un-
known. Working in different energy regions and after an
exhaustive numerical analysis, we have obtained thatra.c
scales askd with d51.9260.1. Figure 6 showsra.c as a
function ofk for gap sizes less than one quarter of the mean
level spacing. In this calculation we have not considered
avoided crossings with bouncing ball states because their
relative contribution to the density of states decreases as
k21/2 @21#.

Another important fact to stress is that each peak is very

FIG. 4. uCmm11u as a function ofl for several energy first
neighboring levels. The labelsa, b, and c . . . show small peaks
that correspond to avoided crossings whose parameters cannot be
obtained directly from the spectrum. The peaks that correspond to
the interaction with bouncing ball states are out of scale and their
maximum values are shown. The labelsA, B, C, andD show well
defined peaks that in the spectrum appears as three levels avoided
crossing. The labelO shows few cases where there is some overlap
between consecutive avoided crossings.
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well defined; its width~given by l int) is much smaller than
the mean distance between consecutive peaksra.c

21. Only
in a few cases a small overlap between consecutive avoided
crossings is observed~see, for example, the peaks labeled by
O in Fig. 4!. For generic avoided crossings we have obtained
that l intra.c'0.2; for avoided crossings with bouncing ball
states this product is even smaller as expected.

III. LANDAU-ZENER BEHAVIOR

As we mentioned in the Introduction, our aim is to under-
stand whether LZ transitions govern the mechanism of one
body dissipation in systems with complex spectra. In the
preceding section we have analyzed the coefficientsCmn that
describe the quantum evolution of a particular system with
complex spectrum. The analysis revealed that the coeffi-
cients have a simple structure of well defined Lorentzian
peaks as the dominant contribution, plus a very small com-
ponent without any defined structure~see Fig. 5!. These
peaks are concentrated in the first neighboring levels coeffi-
cients, which, as we will show below, is a characteristic of
LZ transitions. In a few cases well defined peaks appear in
coefficients between second neighboring levels, but these
peaks are one order of magnitude smaller than the previous
ones. We will discuss this situation below using an idealized
three level system.

We begin this section with a brief review on the theory of
LZ transitions. Consider a two level system that depends on
a parameterl , in such a way that forl 5l 0 the energy
levels experience an avoided crossing. Letf6(l ) be the
adiabatic eigenstates andE12E25Ag2(l 2l 0)

214e2 the
energy gap between the associated eigenvalues, withg and
e constants. The adiabatic theorem@22# tells us that if the
system is initially in the statef2 and l changes infinitely
slowly from l <l 0 to l >l 0 the system will remain in the
statef2 . However, if l changes with a finite velocity the
final state will be a linear combination of the basis states.
Zener derived the probability of an adiabatic transition em-
ploying the diabatic basis@23# for a constant velocity of the
parameterl̇ . If at time t52` the system were in the state
f2 the transition probability at timet5` would be Pz

5exp(22pe2/gl̇ \) @24#. Using the adiabatic basis and~1.9!
is straightforward to derive

C12~ l !5
l int

2@ l int
2 1~ l 2l 0!

2#
, ~3.1!

where l int[2e/g is the width of the Lorentzian function;
that is, the characteristic time for a LZ process.

It has been suggested in recent literature that it is very
difficult to characterize the interaction between neighboring
levels in spectra like the present one in terms of LZ transi-
tions @13#. The arguments could be summarized as follows:
~i! It is not always possible from the spectrum to localize the
position of the avoided crossings and to determine the pa-
rameters that define the LZ transitions. This assertion is par-
tially true; it is not in the spectrum where all the information
is contained. We have solved this problem employing the
adiabatic basis, in which the position of the avoided crossing
and the interaction lengthl int are well defined in terms of
the coefficientsCmn . ~ii ! The LZ transition probability is
exponentially small when the length of the transition process
goes to infinity, but it could be strongly affected for lengths
of the order ofl int @25#. This problem could emerge if the
mean distance between avoided crossingsra.c

21 is of the order
or less thanl int . In the preceding section we have obtained
l intra.c'0.2 for generic avoided crossings~between delo-
calized eigenfunctions! and this value is highly reduced for
localized eigenfunctions. In a physical system the eigenfunc-

FIG. 5. The top showsuC1312(l )u2Lz(l ) as a functionl .
Lz(l ) is a sum of Lorentzian functions centered on the peaks of the
coefficientuC1312(l )u. Their widths and the position of the centers
are l int and l 0, respectively. The remaining part of the figure
shows the coefficientsuC13132 j (l )u for j52,3,4 as a function of
l .

FIG. 6. Log-log plot of density of avoided crossingsra.c as a
function of k for gap sizes less than one-quarter of the mean level
spacing.ra.c scales ask

d with d51.9260.1.
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tions present some degree of localization because the associ-
ated classical phase space is not fully chaotic. Therefore, we
do not expect correlations between consecutive avoided
crossings. In terms of the coefficientsCmm11, the last asser-
tion means that each individual peak is very well defined.
~iii ! One often encounters a situation where three levels
come close to each other and by simple inspection one can
think in a three level crossing~see, for example, pointsA,
B, C, andD in Fig. 3!. In order to understand this process we
will analyze a three level system which mimics such a cir-
cumstance. Consider a one parameter dependent Hamiltonian
defined in the diabatic basis by the following matrix:

eS 2l /l int 1 0

1 0 1

0 1 l /l int

D
with e the perturbation andl int the characteristic transition
length. This Hamiltonian can be diagonalized analytically for
each time. The upper and lower eigenenergies are repre-
sented by hyperbolasE656eA(l /l int)

212, as in the LZ
process, and the middle energy isE050 for all times ~see
Fig. 7!. Obviously, for a diabatic evolution, if the system
were in the upper state at2l /l int@1, there is a high prob-
ability ;1 that the system decays to the stateE2 at l /l int
@1. In other words, the presence ofE2 affects enormously
the transition probability betweenE1 andE0. However, we
are interested in an adiabatic evolution where the transition
probability toE2 turns to be small. In such a situation we
want to determine whether the LZ parameters forE1 and
E0, that is (E12E0)/2 at l 50 ~we denote itD) and l int ,
adequately describe the transition probability between these
two states. This point is not obvious at all. For example, the
distance (E12E0) is largely affected by the presence of
E2 andDÞe, contrary to the case of a two level system. We

have computed numerically the dynamical evolution of this
model obtaining the following result for the transition prob-
ability betweenE1 andE0:

PE1→E0
; 1

2 exp@2pD~ l int / l̇ \!0.96# ~3.2!

for PE1→E0
&0.2. That is, although the parameters need to

be renormalized, the factor is very close to 1. As a conclu-
sion, this three levels system may be thought as two inde-
pendent avoided crossings with LZ interactions.

IV. FINAL REMARKS

The results of this paper attempt to extend the present
understanding of one body dissipation processes. To analyze
the way in which energy is transferred from the time-
dependent mean field to the individual nucleons we have
modeled the mean field by a slowly time-dependent con-
tainer. The same approach has been employed by many other
authors in related nuclear models@7,8#. The container is rep-
resented by a planar billiard with externally driven moving
walls. To solve the quantum mechanical evolution of these
simplified systems, we have derived a one-dimensional for-
mulation. This approach gives us the possibility to study the
evolution of highly excited states and reduces the CPU time
involved in the calculations. We have devoted part of the
work to answer a fundamental question; whether a Landau-
Zener excitation mechanism governs the irreversible trans-
port of energy from the driven wall to the particles in an
adiabatic evolution. We have analyzed a parameter depen-
dent billiard system with GOE character spectrum, conclud-
ing that in an adiabatic evolution of the external parameter,
the dissipation is dominated by LZ transitions at the avoided
crossings. Theadiabatic limit is attained in the limit of an
infinitely slow evolution. On the other hand, adiabatic evo-
lution refers to slowly varying evolutions@14#. Of course, the
notion of slow motion needs to be clarified. For example, we
have excluded in our analysis the structure shown by the
functionC1311(l ) in Fig. 5 because its height is very small;
although the area under it is comparable to the area under
any peak observed in Fig. 4. However, becauseC1311(l ) is
multiplied in the differential equation~1.7! by an oscillatory
function with periodT'\rE (rE is the density of energy
levels!, its effective contribution is canceled if the time re-
quired by the collective motion to sweep the structure

tcoll'ra.c
21/ l̇ is larger thanT.

The above adiabaticity condition is satisfied by systems
where quantum effects are very important, such as nuclei.
However, as the wave number increases, the collective ve-
locity needs to be reduced drastically. Taking the semiclas-
sical limit \→0, k→`, with (k\)2/2m5E5const, it results
that T5O(k0) and tcoll5O(k2d/ l̇ ). Therefore, for any fi-
nite value ofl̇ , the evolution is alwaysdiabatic in the semi-
classical limit. In other terms, a semiclassical theory of dis-
sipation requires a scaling ofl̇ . To our knowledge, this

FIG. 7. Energy levelsE1 , E2 , and E0 as a function of
l /l int for the three-levels Hamiltonian analyzed in Sec. III. The
dotted lines indicate the asymptotes toE2 andE1 . The distance
(E12E0)(0)5A2e is also drawn.
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important point has not been taken into account in previous
works @13#.

The description of the damping process in terms of LZ
transitions has been already done by Wilkinson in the con-
text of pure random matrix theory@12,17# but the present
work studies a more realistic system. If the LZ behavior
holds it is more or less straightforward to write the corre-
sponding diffusion equation to quantify the dissipation
mechanism~for further details see@17#!.
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